
startR: retrieval of multidimensional
distributed data sets

Nicolau Manubens1, Virginie Guemas1, 2, Pierre-Antoine Bretonnière1, Julia Giner1, Alasdair Hunter1

(1) Earth Sciences Department, Barcelona Supercomputing Center, Spain (2) Centre National de Recherches Météorologiques, France

 Caché-ing requests and results to avoid repeated

data transfers for identical requests close in time.

 Developing tools to automatically retrieve data sets

by chunks and apply a set of user-defined opera-

tions on a cluster of workstations.

 Inclusion of new file readers to support additional

file formats.

 Data retrieval and alignment is one of the first steps in data analysis, and is often highly complex and time-consuming. This is spe-

cially crucial in the era of Big Data, where large multidimensional data sets from diverse sources need to be combined and processed.

 startR is an R project started at BSC aiming to develop a tool that allows the user to automatically retrieve, homogenize and align subsets of multidi-

mensional distributed data sets for later analysis and operation.

 It is an open source project that is open to external collaboration and funding, and will continuously evolve to support as many data set formats as possi-

ble while maximizing its efficiency. startR v0.0.2 is currently available on CRAN (cran.r-project.org/web/packages/startR).

 The first step in data analysis made easy

Design Example
 The startR package provides mechanisms to easily

combine and retrieve data sets stored in several fi-

les and folders in local or remote servers.

Support for any file format can easily be added by plugging in a “file reader”

function for that specific format, which can usually be written in less than 100 li-

nes of code. File readers for NetCDF, CSV and XLS formats are currently imple-

mented and included in the package. Retrieval of data from remote file servers,

THREDDS servers or other OPeNDAP-speaking servers is supported.

 startR provides an abstraction of the data files in a

way that the whole involved data can be perceived

as a large multidimensional array.

After some initial configuration to help the package recognize how the files are

distributed, the user can work with the multidimensional abstraction and does

not longer need to worry about the file distribution. Once the data has been

mapped to this abstraction, the user can easily select, transform and arrange da-

ta subsets for later analysis. For example, the user can request for automatic

transformations to be done on the fly, such as regridding raster data or avera-

ging across a specific dimension.

 R arrays with named dimensions are the fundamen-

tal working piece of this package.

Their shape can easily be configured. It will arrange the data with the dimensions

in the same order they are requested. Additionally, metadata can be extracted

and attached as attributes to the data array, as long as the used file reader is able

to extract it from the files.

 It is designed for an optimal performance.

The data is retrieved in parallel with the required data reorderings the transfor-

mations in multiple cores, so that the network connection use is maximized.

CRAN

The following illustration represents an example of a distributed data set with sales data from a

multinational supermarket chain, with a number of stores in each country. Each month of the

year, all the stores record the number of sales for each product in one file, and the retail price of

each product in another file. Each new season, a separate new file is started.

The blue and green wired boxes represent subsets of data being retrieved with startR. The gray

rectangles contain the code used to retrieve the subsets.

 M U L T I C O R E

The blue subset is retrieved.

data <- Start(

 # Dimensions are declared and indices defined:

 dataset = sales_data,

 country = 'all', variable = 'all',

 season = 'all', store = 'all',

 product = 'all', time = indices(5),

 # Some dimensions extend across files:

 store_across = 'country',

 time_across = 'season'

)

startR is an ideal retrieval and alignment tool to run

heavy computations on computing clusters. Each no-

de uses startR to retrieve and prepare its correspon-

ding chunk from a large data set. Then, it applies the

 startR in Big Data workflows

required processing opera-

tions on the data chunk,

and sends the results back

to be merged in.

PRICES_S3 PRICES_S2 PRICES_S1

st
o

re
 SALES_S3 SALES_S2 SALES_S1

time

PRICES_S3 PRICES_S2 PRICES_S1

st
o

re
 SALES_S3 SALES_S2 SALES_S1

time

/filesystem/

country_A/

country_B/

 M U L T I C O R E

The green subset is retrieved.

data <- Start(

 # Dimensions are declared and

 # indices defined for each:

 dataset = sales_data,

 country = 'all',

 variable = 'SALES',

 season = 'all',

 store = indices(2:3),

 product = indices(3:4),

 time = 'all',

 # Some dimensions extend

 # across files:

 store_across = 'country',

 time_across = 'season'

)

library(startR)

First, a path pattern to the data set files is built. $wildcards$ can be used.

sales_data <- '/filesystem/$country$/$variable$_S$season$.xls'

CLUSTER NODE 1

startR

processing

CLUSTER NODE 2

startR

processing
...

Prospects (as of July 2017)

 M U L T I C O R E

The blue subset can be processed on the fly

(averaged in this example) at the same time it is

being retrieved in parallel.

data <- Start(

 # Dimensions are declared and indices defined:

 dataset = sales_data,

 country = 'all', variable = 'all', season = 'all',

 store = 'all', product = 'all', time = indices(5),

 # Some dimensions extend across files:

 store_across = 'country', time_across = 'season',

 # Request for parallel computation of sale and

 # price averages across the stores:

 transform = function(x, ...) {

 multiApply::Apply(x, mean, 'store')

 }

)

time

st
o

re

dim(data): c(dataset = 1, variable = 1, store = 4, product = 2, time = 12)

time

st
o

re
 dim(data):

 dataset = 1

 variable = 2

 store = 1

 product = 4

 time = 1

CASE I

CASE II CASE III

time

st
o

re
 dim(data):

 dataset = 1

 variable = 2

 store = 8

 product = 4

 time = 1

This simple example does not demonstrate the full selection, transformation

and alignment capabilities of startR. Besides, Start() supports data sources

with any number of dimensions in any order and with any names. Also, mul-

tiple local or remote sources in other formats, such as NetCDF, can be combi-

ned in a single call. In this multidimensional array framework, the package

multiApply becomes specially useful to efficiently operate components.

multiApply

startR

